Characterization of turbulence stability through the identification of multifractional Brownian motions
نویسنده
چکیده
Multifractional Brownian motions have become popular as flexible models in describing real-life signals of high-frequency features in geoscience, microeconomics, and turbulence, to name a few. The time-changing Hurst exponent, which describes regularity levels depending on time measurements, and variance, which relates to an energy level, are two parameters that characterize multifractional Brownian motions. This research suggests a combined method of estimating the time-changing Hurst exponent and variance using the local variation of sampled paths of signals. The method consists of two phases: initially estimating global variance and then accurately estimating the time-changing Hurst exponent. A simulation study shows its performance in estimation of the parameters. The proposed method is applied to characterization of atmospheric stability in which descriptiv statistics from the estimated time-changing Hurst exponent and variance classify stable atmosphere flows from unstable ones.
منابع مشابه
F eb 2 00 8 Multifractional , multistable , and other processes with prescribed local form
We present a general method for constructing stochastic processes with prescribed local form. Such processes include variable amplitude multifractional Brownian motion , multifractional α-stable processes, and multistable processes, that is processes that are locally α(t)-stable but where the stability index α(t) varies with t. In particular we construct multifractional multistable processes, w...
متن کاملFractional Brownian fields, duality, and martingales
In this paper the whole family of fractional Brownian motions is constructed as a single Gaussian field indexed by time and the Hurst index simultaneously. The field has a simple covariance structure and it is related to two generalizations of fractional Brownian motion known as multifractional Brownian motions. A mistake common to the existing literature regarding multifractional Brownian moti...
متن کاملLinear multifractional multistable motion: LePage series representation and modulus of continuity
In this paper, we obtain an upper bound of the modulus of continuity of linear multifractional multistable random motions. Such processes are generalizations of linear multifractional α-stable motions for which the stability index α is also allowed to vary in time. In the case of linear multifractional α-stable motions, we improve the recent result of [2]. The main idea is to consider some cond...
متن کاملIntermittency and multifractional Brownian character of geomagnetic time series
The Earth’s magnetosphere exhibits a complex behavior in response to the solar wind conditions. This behavior, which is described in terms of mutifractional Brownian motions, could be the consequence of the occurrence of dynamical phase transitions. On the other hand, it has been shown that the dynamics of the geomagnetic signals is also characterized by intermittency at the smallest temporal s...
متن کاملLocal times of multifractional Brownian sheets
Denote by H(t) = (H1(t), . . . ,HN (t)) a function in t ∈ R+ with values in (0, 1) . Let {B(t)} = {B(t), t ∈ R+} be an (N, d)-multifractional Brownian sheet (mfBs) with Hurst functional H(t). Under some regularity conditions on the function H(t), we prove the existence, joint continuity and the Hölder regularity of the local times of {B(t)}. We also determine the Hausdorff dimensions of the lev...
متن کامل